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Abstract: Yields for the Australian sugar industry can vary seasonally and regionally. Advanced knowledge
of likely sugar produciivity levels for mill regions in a particular season would assist marketers to forward seil
Australian sugar, and allow mill managers and harvest operators to better plan for the coming season. Given
that climate is a key driver of productivity, the purpose of this paper is to investigate the poteatial usefulness
of a climate forecast system which incorporates five patterns or phases of the Southern Oscillation Index
(SOI) to forecast sugar yields. The chance of obtaining a sugar yield above the long-term median was
computed for each SOI phase across eight regions which span the coastline of Queensiand, where most of
Australia's sugarcane is grown. Results indicate that for certain regions, the chance of obtaining an above
average crop can be greatly increased, and in some cases decreased depending on the phase of the SOL Since
many decisions in the Australian sugar indusiry are based on crop size, the SOT phases provide a useful tool
for enhancing decision making and risk management capability for the industry.
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1. INTRODUCTION component of the value chain ie. from the
farming and harvesting sectors through to milling

The Australian sugar industry contributes between . . .
¥ Y and marketing sectors of the industry.

one to two billion dotlars annually to the
Australian economy with more than 3 million
tonnes of sugar produced from in excess of
400000 hectares of farmland harvested. Most of
this farming land occupies the narrow coastal strip
of Eastern Australia which extends some 2100 km
between the latitudes of 15 to 30 degrees south.
Climate across this coastal strip is remarkably
diverse which leads to regional variation in
production, Productivity can alse vary seasonally.

Many decisions are made based on the likely size
of the crop. One such decision refates to timing
the start of the harvest season. Underestimating
the size of the crop could cause the start of the
season to be delayed with risk of the harvest
season extending into the wet season increased
[Muchow and Wood, 1996]. Overestimating the
size of the crop could cause the season to siart
pnnecessarily  earlier  than  required.  With
sugarcane levels typically being higher towards
the end of the harvest season [Muchow ot al,
1997}, harvesting earlier than required could
result in a lowering of the overall sugar content
thereby reducing profit leveis. Decisions also
made at the marketing end of the value chain
relate to the selling and storage of sugar
Overestimates pose problems in meeting forward
export commitments and underestimates can jead
to potential shortfails in managing limited storage
Tequirsiments.

The typical harvest scason for the Australian sugar
industry commences arcuad June and extends io
November/December of the same year. Estimates
of productivity levels for the next scason are
usuajly made at the end of the previous harvest
season around November. This allows industry
decision-makers to begin planning for the
following season.

Knowledge of sugarcane productivity levels is
tmportant for industry decision-makers from each
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ft is clear that if more accurate yicld forecasting
methods existed then such decisions could be
better managed. Whilst yield estimates are made
progressively throughout the year, this paper
focuses on improving the accuracy of initial
esiimates of productivity made at the end of
November,

The El Nifio - Southern Oscillation (ENSO)
phenomencn [McBride and Nicholls, 1983] is
potentially one factor that contributes 1o the
variability in sugarcane yields between seasons.
Kuhnell {1994] found an inverse reationship
between the Southern Oscillation Index (80D, (a
measure  of the strength ENS(O)Y,  and
productivity measured in both tonnes of cane per
hectare {TCPH) and tonnes of sugar per hectare
(TSPH) seven to eleven months prior to the
commencement of harvest. This was especially the
case for northern and southern sugar growing
districts along the coast of Queensland. A weak
positive relationship for the central coast of
Queensland was found but this relationship did
not become evident until just before the start of
the harvest. Kuhnell [1994] noted that the
relationship between productivity and the SOT was
stronger for cane productivity (TCPH) than for
sugar productivity {TSPH), but in either case only
a small proportion of the variation of production
can actally be explained by this simplistic
relationship with the SOL

o
L

Instead of using actual values of the SOI, an
alternative approach is to consider phases of the
301 [Stone and Auliciems, 1992; Stone et al.,
1996]. The SOI ‘phases’ represent the relative
importance of both the consistency and the change
in month to month values of the SOI, and were
derived by a principal componeuts analysis and
cluster analysis of a time series of the SOI. The
five clusters or phases are teferred to as
‘consistently negative’, ‘consistently positive’,
‘rapidly falling’, ‘rapidly rising’ and ‘consistently
near zero’. Each month since 1887 can he
classified into one of these phases.

The five phase SOI climate forecasting system has
previousty been used for forecasting agricaltural-
based responses for the peanut [Meinke et. al,
1996] and wheat industries [Hammer et, al.,
1996). For the sugar industry, Singels and
Bezuidenhout {1998 and 199971 identified, by
examining graphical displays and simple summary
statistics, that South African sugarcane vields
tended to be reduced in years when the November
SOI phase, was ‘consistently negative’. Climarte
conditions occurring in  Ausiralian sugarcane
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growing regions can be different to climate

conditions occurring in cane growing regions of

South  Africa. The work by Singels and

Bezuidenhout [Singels and Bezuidenhout, 1998],

[Singels and Bezuidenhout, 19997 was extended

by Everingham et al {2001] by examining the

effect that each of the five SO phases has on

Australtan sugarcane yields. Bveringham et al.

f20001 made use of Monte Carlo procedures

{Good, 19977 o determine which of the five SOI

phases were most useful for indicating when

Australian sugarcane yields (TCPH) are likely to

be above (or below) the long term median

{detrended) for eight mill locations of relevance o

the Awustralian sugar indusiry — Mulgrave, Tully,

Yictoria, Inkerman, Proserpine, Marian,  [sis,

Moreton. Results indicated that

¢ A ‘comsistently negative’ November SOI
phase offers the potential to improve vield
forecasting for Mulgrave, Tuily and Isis.

s A ‘consistently positive’ November
phase offers the potential to improve
forecasting for Tully, Isis and Moreton.

® A ‘consistently falling’ November SOY phase
offers the potential to improve vyield
forecasting for Tully and Isis.

e A ‘rapidly rising’ November SOl phase offers
the potential to improve yield forecasting for
Tully.

= A ‘consistently near zero’ November 50]
phase offers the potential to improve viekt
forecasting for Marian,

301
yieid

Thus, the five phase SO! system offers the
potential to improve sugarcane estimates but
success is Hkely to vary with geographical
location and SOI phase.

Since sugar is the actual guantity that marketers
sell, this paper seeks to identify the relationship
between November SOI phases and sugar yields
measured in tonnes of sugar per hectare for the
next season. This information can then provide a
more direct linkage for marketers to begin
planning export commitments for the next season.

2. DATA and METHODS

2.1 Sugar Productivity Data

The sugar productivity data considered in this
paper consist of sugar tonnages per hectare
barvested for eight mil locations which span the
castern coast of (Jueensland (Mulgrave, Tully,
Victoria, Inkerman, Proserpine, Marian, Isis,
Moreton). These mills along with the start and
finish times of the TSPH data are displaved in



Table 1. Table 1 also contains information
regarding the approximate locations of the mills in
decimal degrees as well as the mean annual
rainfall (mm} recorded at nearby Bureau of
meteorological sites. These summary rainfall data
were extracted from Rainman version 3.2 [Clewett
et al. 19991

Table 1. Latitude and longitude of selected mills
and mean annual rainfall. The last two columns
show the start and finish times of actual vield data
obtained for each mill.

* G R - B O

MUL -17.09 145.79 1540 1942 1999
TUL -17.94 145.93 4056 1943 1999
ViC -18.65 146,18 2064 1900 1949
INK -19.77 147.46 903 1942 1094
PRO -20.55 148.66 1672 1918 1999
MAR -21.16 148.87 1464 1942 1999
ISt -25.190 152.56 g7% 1942 1999
MOR -26.62 152.97 1695 1942 1999

2.2 Detrending Process

Owing largely to modifications in farming and
harvesting practices, the time series of TSPH data
contains trends. Prior to any formal analyses it is
necessary {0 remove such trends from the data
whilst at the same time capturing year-to-year
variability in yields that can be largely attributed
to climate variation. The detrending procedure
applied in this paper consists of two steps, The
first step fits a robust smoother which
incorporates a running median procedure [SPLUS
2000 Guide to Statistics, 19997 to each time series
of TSPH values. The TSPH data fitted by the
smoother are then subtracted from the observed
TSPH values to produce a TSPH anomaly.

The detrending procedure can be summarised by

Gy = Fij - &y (

where

x; is equal to the actual TSPH value for mill i in
year j, y; is equal to the smoothed TSPH values
(vi=H{x;) where f() is the smoothing function) and
a; 15 the TSPH anomaly for mill ¢ and year ;.
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2.3 Climate Forecasting Technigue

The ‘five phase SOI system’ is applied in this
paper [Stone et al., 1996; Stone and Auliciems,
199Z2]. This climate forecast system utilises pre-
determined clusters of the SOI which represent the
relative imporiance of both the consistency and
change in month to month values of the SOI. The
five clusters or phases of the SCI are referred to
as: ‘consistently negative’ (neg), ‘consistently
positive’ {pos), ‘rapidly falling’ (fal), ‘rapidiy
rising’ {ris) and ‘consistently near zera® {(nz). By
comparing the average SOI from one month to the
next, it is possible to assign the consecutive
months into this phase typology.

2.4 Amnalysis Methods

Since initial estimates of sugar tonnages are made
during the November prior to the next harvest
(which wsually commences around June of the
following year) we compule the probability of
obtaining a TSPH anomaly greater than the
median conditioned on  the November SOI
phases, By partitioning sugar yields into five
different groups which correspond o each
November SOI phase, it is possible to determine
how many TSPH wvalues excecd the overall
median for each phase grouping. In general terms,
the probability of exceeding the median is equal to
0.50, but for certain years which experience
specific SOI patterns this probability may be
conditional on the SOl phase and can shift
accordingly.

Probabilities that differ from 0.3 are of particular
interest to industry since this indicates that above
{or below} average yields are more (or less) likely.
Toe determine the approximate significance of
gach probability conditional on a specific SOI
phase, a Monte Carlo procedure [Goaod, 1997]
was  employed. Ten  thousand  random
permutations of the November SQI phases were
generated using SPLUS 2000. For each SOI phase
in each permutation, the probability of exceeding
the median TSPH anomaly was computed. The
proportion of probabilities (from the possible
10,000 values) that were as extreme or more
extreme than the conditionai probabilities
computed from the actual SOI phases were
computed. The smaller the proportion the less
likely that the observed probabilities are due (o
chance. The actoal cut-off value for determining
whether the probability for exceeding the median
is due to chance is somewhat arbitrary. We adopt
a cut-off criterion of 0.10, or in other words, a
significance level of 10%.



RESULTS AND DISCUSSION

Figure 1 dispiays the effect of the detrending
process described in Section 2.3 when applied to
yields from the Proserpine Mill. The original and
smoothed TSPH time series are shown in Figure
1(a) and the detrended time series which produces
the TSPH anomalies is displayed in Figure 1(b).
For each mill the value of the median TSPH
anomaly value is approximately zero.

3.

The percent chance of exceeding the median
TSPH anomaly for each mill conditioned upon
each SOI phase is shown in Table 2. The value
shown in brackets in each cell is the percentage of
the 10000 probabilities generated from the Monte
Carlo process that were as exfreme or more
extreme than the observed probability. Taking
Proserpine, as an example, — when the November
501 phase was consistently negative 31% of cases
resulted in 2 TSPH anomaly greater than the
median and only 8.5% of the 10000 simulated
probabilities generated from the permuted SOI
phases were less than or equal to 31%. The
approximate P-values computed from the Monte
Carlo process are one sided, for example, when
the November SOI phase was consistently near

zero, 11.6% of the 10000 simulated probabilities
were greater then or equal to 62%. Bracketed
vajues less than 109% are indicated with an
asterisk.

Results indicate that pot all the November 501
phases are useful for identifying the likelihocd of
the TSPH anomaly exceeding the median. This
result is also  dependent upon  location.
Probabilitiecs which deviate from 50% at an
approgimate significance level of 10% suggest
that:

= A ‘consistently negative’ November SOI
phase offers the potential to improve yield
forecasting for Tully, Proserpine and isis.

* A ‘consistently positive” November SOGI
phase offers the potential to improve yield
forecasting for Tully and Isis.

® A ‘rapidly rising’ November SOI phase offers
the potential to improve yield forecasting for
Tully.

Proserpine Mill
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Figure 1. (a) Time series plots displaying the original and smoothed sugarcane ylelds measured in tonnes of
sugar per hectare (TCPH) for Proserpine Mill. (b) A time series plot for Proserpine Mill displaying the TSPH
anomalies which is the difference between the original and smoothed sugarcane yieids (see Eq. 1).
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Table 2. Percent chance (P} of exceeding the median TSPH anomaly for each of the 5 SOI phases for
November. The number in brackets represents the approximate percentage chance of obtaining a value as
extreme or more extreme than P. Bracketed values less than 10% are indicated by an asterisk.

Mill Negative Positive Falling Rising Near Zero
Mulgrave 58 (37.3) 42 (37.9} 71(20.9) 50 {(62.4) 41 (28.9)
Tully 82 (1.8)* 27 (9.8)F 50 (65.0) 4G (40.0) 47 (53.6)
Victoria 55 (46.6) 64 (22.7) 33(35.2) 20 (4.4)% 59 (25.5)
Inkerman 50 (61.8) 50 (61.9) 43 (49.5) 50(63.9) 53 (50.2)
Proserpine | 31 (8.5)* 43 (30.2) 56(49.6) 58 (38.0) 62 (11.6)
Marian 42 (36.1) 38 (37.7) 43 (50.6) 30(15.4) 65 (12.6)
Isis g (0.D* 75 (5.5)* 43 (50.2) 70 (14.9) 53(49.7)
Moreton 50 (62.7) 33(16.3) 57 (50.9) 70 (14.4) 47 (50.1)

The choice of the significance Ievel is in many
ways arbitzary. If the approximate significance
level were relaxed from 10% to 20% then results
would indicate that:

®  Yield estimates for Moreton could also be
improved when the November SOI phase is
‘consistently positive’.

e Yield estimates for Marian, Isis and Moreton
could also be improved when the November
SO1 phase is ‘rapidly rising’.

e  Yield estimates for Proserpine and Marian
could also be improved when the November
SO1 phase is ‘consistently near zero’,

In some instances a hypothesis for explaining
physical phencmena associated with the variation
in TSPH yields for different SOI phases across
different locations can be forthcoming. It appears
that in the wetter districts of the north such as
Mulgrave, a ‘consistently negative’ SO phase
‘brings relief through drier conditions’ in that
yields are likely to be higher in such years. For
drier areas such as [sis, and also where irrigation
is limited, the ‘consistently negative’ SO phase
has the converse effect to Mulgrave. For Isis a
‘consistently negative’ November SOI phase
indicates that the chances of having a TSPH
anomaly greater than average is somewhat
reduced. The relationship between TSPH
anomalies for a ‘consistently positive” 801 phase
for Tully and Isis are aiso contrasting. A
‘consistently positive’ SOl phase for Tuily
reduces the chances of experiencing a TSPH
anomaly greater than the median, whilst for Isis
the chances are increased. A ‘consistently
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ncgative’ November SOI phases reduces the
chance of experiencing above average rainfall
over the critical growing period December-
February for most of the locations listed in Table
1, whereas a ‘consistently positive’ SOl phase
increases the chance of above median or average
rainfall.

For the remaining sitpations a physical
explanation detailing why the TSPH yields vary
with SOl phase and location is somewhat of a
challenge at this stage of the research. If one is
willing to accept what has happened to TSPH
anomalies historically, than some value can be
placed on the SOI phases for assisting industry
decision makers to plan [or the coming season,

4. CONCLUSION

The five phase SOI system offers the potentiial to
improve estimates of a yield anomaly which is
based on the ratio of tonnes of sugar io hectares
harvested, and to improve risk management for
decisions which are based on knowledge of crop
size. The usefulness of the system was found to
vary with SOI phase as well as geographical
focation.

Future research should investigate whether the
direction and magnitude of the yield anomaly can
be predicted with greater accuracy by zlso
considering other potential predictor variables
such as sea surface temperatures. indusiry has
already used the results contained in this paper to
assist with the planning of the Australian 2001
SugAr 32a50M.
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